
Neural Architecture Growth
by fixing Expressivity Bottlenecks

Manon Verbockhaven, Barbara Hajdarevic,
Sylvain Chevallier, Guillaume Charpiat

prenom.nom@inria.fr

TAU team, LISN, INRIA Saclay / Université Paris-Saclay

14 décembre 2023
JRAF, Grenoble

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Neural Architecture Growth
by fixing Expressivity Bottlenecks

Manon Verbockhaven, Barbara Hajdarevic,
Sylvain Chevallier, Guillaume Charpiat

and Stella Douka
and you!

Post-doc/SRP position available: contact me!
prenom.nom@inria.fr

?
M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Overview

Introduction & Neural Architecture Search
Expressivity bottlenecks
Best neurons to add
Experimental results on fixed architecture
Extension to DAG
Discussion

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Introduction

I - Introduction

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Introduction
Computational ressources required by Deep Learning:

Compute Trends Across Three Eras of Machine Learning, Sevilla et al., IJCNN 2022

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Introduction
Computational ressources required by Deep Learning:

larger and larger models (ex: GPT)
larger because more powerful in practice
(cf scaling laws, provided more data is available)
more and more powerful =⇒ more and more used
(and this is just the beginning)

Environmental impact:
training cost: impressive for LLM, yet quite small w.r.t. usage in
industry (cf M. Jay’s presentation: 20% at FB)
carbon impact: debatably less than when done by Humans
other environmental impacts (full life cycle, incl. hardware and
data): ?

=⇒ here, computational complexity
(pros: hardware independent; cons: without memory access, cf yesterday talks + Anais Boumendil’s ongoing PhD

thesis)

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Introduction

Common paradigm:
train large architectures

Pros:

approximate any function
(universal approximation
theorems)

nice optimization properties:
gradient descent leads to good
minima (many possible
optimization directions)

scaling laws (better results with
more data)

Cons:

it’s heavy (to train and to
apply)

need for reduction techniques
afterwards (pruning,
quantization, tensorization... or
distillation)

=⇒ Finding the right architecture directly by optimizing it ?

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Introduction

Common paradigm:
train large architectures

Pros:

approximate any function
(universal approximation
theorems)

nice optimization properties:
gradient descent leads to good
minima (many possible
optimization directions)

scaling laws (better results with
more data)

Cons:

it’s heavy (to train and to
apply)

need for reduction techniques
afterwards (pruning,
quantization, tensorization... or
distillation)

=⇒ Finding the right architecture directly by optimizing it ?
M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

NAS : Neural Architecture Search
Single vs. multi-task:

single task, from scratch (no prior knowledge)
multi-task learning, transfer, meta DL (sharing information between
tasks)

Architecture search:
by hand
exploration (fancy random search by trial & error): genetic
algorithms1, reinforcement learning2

=⇒ sensitive to exploration hyper-parameters, needs a lot of
computational resources.

gradient-based methods
pruning large networks: DARTS3

growing small networks: GradMax4

1 : Compositional pattern producing networks: A novel abstraction of development, K. Stanley, 2007
2 : Neural Architecture Search with Reinforcement Learning, B. Zoph et al, ICLR 2017
3 : DARTS: Differentiable Architecture Search, H. Liu, K. Simonyan & Y. Yang, ICLR 2019
4 : GradMax: Growing Neural Networks using Gradient Information, U. Evci et al, ICLR 2022

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

NAS : Neural Architecture Search
Single vs. multi-task:

single task, from scratch (no prior knowledge)
multi-task learning, transfer, meta DL (sharing information between
tasks)

Architecture search:
by hand
exploration (fancy random search by trial & error): genetic
algorithms1, reinforcement learning2

=⇒ sensitive to exploration hyper-parameters, needs a lot of
computational resources.

gradient-based methods
pruning large networks: DARTS3

growing small networks: GradMax4

1 : Compositional pattern producing networks: A novel abstraction of development, K. Stanley, 2007
2 : Neural Architecture Search with Reinforcement Learning, B. Zoph et al, ICLR 2017
3 : DARTS: Differentiable Architecture Search, H. Liu, K. Simonyan & Y. Yang, ICLR 2019
4 : GradMax: Growing Neural Networks using Gradient Information, U. Evci et al, ICLR 2022

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Starting with a small neural network

Training a small network:

faster learning, less memory

the solution found by gradient descent is poor

=⇒ adapt the architecture during training:

estimate and localize potential expressivity bottlenecks, and fix
them on the fly, without trial/error.

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Expressivity bottlenecks

II - Expressivity Bottlenecks

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Definitions, Goals, Objectives

For a given neural network with architecture A :
What are expressivity bottlenecks ?

Where are they ?
How to quantify them ?
in a computationally efficient manner ?

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Optimizing Neural Networks
Gradient descent in the space of parameters θ: converges to a local
optimum

Notations

Dataset D := {(xi , yi)}N
i=1 ∈

(
Rp × Rd)N iid ∼ P

Neural Network fθ : Rp −→ Rd

Loss function L :
(
Rd)2 −→ R+

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}
Tangent space at fθ:
T fθ

A := TA ={
∂fθ
∂θ

δθ

∣∣∣∣∣ s.t. δθ ∈ Θ
}

g ∈ TA ⇐⇒ ∃δθ s.t. g(x) = fθ(x) + ∂f (x)
∂θ

δθ

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}
Tangent space at fθ:
T fθ

A := TA ={
∂fθ
∂θ

δθ

∣∣∣∣∣ s.t. δθ ∈ Θ
}

vgoal := − ∇f L(f)|f =fθ

v∗ : best possible move within TA

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}
Tangent space at fθ:
T fθ

A := TA ={
∂fθ
∂θ

δθ

∣∣∣∣∣ s.t. δθ ∈ Θ
}

vgoal := − ∇f L(f)|f =fθ
v∗ : best possible move within TA = −∇θL(fθ)
=⇒ Problem solved! Easy!

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}
Tangent space at fθ:
T fθ

A := TA ={
∂fθ
∂θ

δθ

∣∣∣∣∣ s.t. δθ ∈ Θ
}

vgoal := − ∇f L(f)|f =fθ

v∗ : best possible move within TA = −∂fθ
∂θ

∇θL(fθ)
=⇒ Problem solved! Easy!

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Mathematical objects
Architecture space : ΘA

FA = {fθ | θ ∈ ΘA}
Tangent space at fθ:
T fθ

A := TA ={
∂fθ
∂θ

δθ

∣∣∣∣∣ s.t. δθ ∈ Θ
}

vgoal := − ∇f L(f)|f =fθ

v∗ : best possible move within TA = −
(

∂fθ
∂θ

∂fθ
∂θ

T)+
∂fθ
∂θ

∇θL(fθ)

=⇒ Problem solved! ���Easy! “natural” gradient
M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Functional geometry

Expressivity Bottleneck

arg min
v∈TA

E(x,y)∼P
[
||vgoal(x) − v(x)||2

]

= arg min
v∈TA

{
Df L(f)(v) + 1

2∥v∥2
}

Best move v∗ = projection indeed

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Generalizing to each layer: v and vgoal at layer l
Notations: al , bl : pre- and post-activations at layer l

Definition (v l
goal desired update)

vgoal
l(x) := −η∇al (x)L(fθ(x), y)

obtained by back-propagation

Definition (v l possible
update)

v l(x, δθ) := ∂al(x)
∂θ

δθ

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Simplification: non-convex problem w.r.t. all
parameters, to convex problem w.r.t. layer params

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Convex optimization

Best update at layer l
Linear regression from layer input bl−1(x) to desired output variation
v l

goal(x) :
δW ∗

l := arg min
δθ

||V l
goal − δWl Bl−1||2

δW ∗
l = 1

nV l
goalBT

l−1
(1

nBl−1BT
l−1

)−1

with Bl−1 :=
(
bl−1(x1) ... bl−1(xn)

)
=⇒ can now quantify and locate expressivity bottlenecks

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Best neurons to add

III - Best neurons to add

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Augmenting tangent space by adding neurons

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Architecture change to fix expressivity bottleneck

Best neurons to reduce expressivity bottleneck at layer l

arg min
A,Ω

Expressivity Bottleneck︷ ︸︸ ︷∣∣∣∣V l
goal − Vl∗ − ΩAT Bl−2

∣∣∣∣2
Tr

with neuron weights Ω :=
(
ω1 ... ωK

)
and A :=

(
α1 ... αK

)
Solution: by SVD

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Overall algorithm
For each layer l :

layer expressivity bottleneck: ||V l
goal − V l ∗||

with V l ∗: best parameter move with current architecture (by SVD)
estimate best neurons to add to layer l (by SVD)

Then:
grow most promising layer (with a line search on added neuron
weights)
update all layers with V l ∗ (+ line search) or gradient descent

Computational cost:
SVD: cubic, but paradoxically negligible
line search: less negligible
estimation of matrices with sufficiently many samples: even less
negligible =⇒ statistical significance: accuracy ≃ O(1√

N)
=⇒ N ∝ (Width × FilterSize)2/#Pixels

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Overall algorithm
For each layer l :

layer expressivity bottleneck: ||V l
goal − V l ∗||

with V l ∗: best parameter move with current architecture (by SVD)
estimate best neurons to add to layer l (by SVD)

Then:
grow most promising layer (with a line search on added neuron
weights)
update all layers with V l ∗ (+ line search) or gradient descent

Computational cost:
SVD: cubic, but paradoxically negligible
line search: less negligible
estimation of matrices with sufficiently many samples: even less
negligible =⇒ statistical significance: accuracy ≃ O(1√

N)
=⇒ N ∝ (Width × FilterSize)2/#Pixels

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Experimental results

IV - Experimental results

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

CIFAR-10

Accuracy as a function of gradient step

succeeds in total overfitting (100% on train)

similar learning curve as the standard approach with all neurons from
the beginning (FS = final structure found by our method and
reinitialized, retrained from scratch)

without need for choosing in advance the number of neurons/layer

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

CIFAR-10

Accuracy as a function of complexity at test time
better Pareto front

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

CIFAR-100

ResNet-18 on CIFAR-100

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Extension to graph growth

V - Adding layers

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Extension to graph growth

Extension to addition of layers (any DAG): work in progress

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Extension to graph growth
Extension to addition of layers (any DAG): work in progress

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Extension to graph growth

How to add a new layer on the fly?

adding a new layer = adding neurons to an empty layer

same approach

though first-order approximations of activation functions are not sufficient
anymore when adding a layer parallel to a linear layer

same quadratic problem, but with different terms inside

or use random tries, random projections (but in a principled manner)

or perform gradient descent on the new neuron parameters

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Conclusion

VI - Conclusion

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Discussion
Greedy approach: provably not an issue
Proposition:

There always exists a neuron to add that can improve the loss

Avoids redundancy (at each time step)
but final number of neurons might be non-optimal (for given target
accuracy)

Addition strategy (based on size/performance compromise)
=⇒ compare loss gain to computational complexity increase:

δL vs. AddedComplexity

=⇒ same as considering L′ = L + α Complexity

Reasonable runtime: similar to a single standard training
(one run to be compared with NAS: many random tries of
architectures)

Other architectures: convolution = done, attention = to do

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Discussion (bis)

Challenges

Overfit ?

Spurious correlations (when estimating best neurons to add)
=⇒ random matrix theory to estimate eigenvalue significance
=⇒ quantify required dataset size for reliable neuron estimation
but guaranties are gone if one uses gradient descent afterwardss
Data-hungry? Data augmentation? Complexity? Better/other
estimators?

Optimization issue if using gradient descent: different learning rates

Based on linear correlations between inputs and desired output
variations of a layer
=⇒ if stuck, consider higher-order or wise mix with combinatorics /
random tries

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

Thanks!

Thanks for your attention!

Preprint:
https://www.lri.fr/~gcharpia/Expressivity_bottlenecks_
preprint.pdf

Reminder: we are searching for a post-doc/Starting-Research-Position!

M. Verbockhaven, G. Charpiat NA�CSG by fixing Expressivity Bottlenecks

https://www.lri.fr/~gcharpia/Expressivity_bottlenecks_preprint.pdf
https://www.lri.fr/~gcharpia/Expressivity_bottlenecks_preprint.pdf

