
Decentralized Learning made Practical

Martijn de Vos
martijn.devos@epfl.ch

In collaboration with Anne-Marie Kermarrec, Rishi Sharma, Akash Dhasade, Johan 
Pouwelse and Erick Lavoie.

SaCS
Scalable computing
systems laboratory

Grenoble, 14.12.2023

mailto:martijn.devos@epfl.ch


Distributed Learning with Decentralized Data

Data stay where it is generated. Learning happens by model exchange.

Federated Learning (FL) Decentralized Learning (DL)



Decentralized Learning

Train

Share



Decentralized Learning

Receive

Aggregate



Improving Decentralized Learning

20

40

60

0 250 500 750 1000
Communication Rounds

Te
st

 A
cc

ur
ac

y

OP−Exp. (churn) OP−Exp.

20

40

60

0 250 500 750 1000
Communication Rounds

Te
st

 A
cc

ur
ac

y

Global Agg. Local Agg.

1. Churn impacts convergence
2. Global aggregation improves convergence
3. Not all nodes need to work each round (theory in [1])

[1] Liu, Ziwei, et al. "Decentralized stochastic optimization with client sampling." OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop). 2022.



The Design of Plexus

High-level algorithm

1. Each round, a unique subset of online nodes, or a sample, train the model.

2. These nodes send their trained model to an aggregator.

3. The aggregator aggregates models and sends the model to the next sample.

Resembles Federated Learning, but without server.



Three Technical Challenges (TCs)

TC1: How can nodes derive samples?

TC2: How can Plexus avoid selecting offline nodes during sampling?

TC3: How can Plexus ensure system progression when nodes go offline during 
training or aggregation?



TC1: How can nodes derive samples?

● Important that different nodes derive the same sample.

● Each peer stores all peer IDs in a local view.

● Each peer samples peer for the next round using its population view.

● Aggregator selected like this as well, based on bandwidth.



TC1: How can nodes derive samples?



TC2: How can Plexus avoid selecting offline nodes during 
sampling?

● Nodes send a join or leave message to other random nodes.
● Nodes keep track of the membership status of other nodes in their local view.

ID Seq. 
no.

Status

3b9f8 2 LEAVE

u7nk3 3 JOIN

a2o8g 2 JOIN

● Local views are gossiped and merged between nodes.

ID Seq. 
no.

Status

3b9f8 2 LEAVE

u7nk3 4 LEAVE

a2o8g 1 LEAVE

ID Seq. 
no.

Status

3b9f8 2 LEAVE

u7nk3 4 LEAVE

a2o8g 2 JOIN

Local view of node a Local view of node b After merge



TC3: How can Plexus ensure system progression when 
nodes go offline during training or aggregation?

● Aggregator proceeds when 
○ Received f < s trained 

models
○ After some aggregation 

timeout

Participant failure Aggregator failure

● Aggregator sends ACK 
message to previous 
participants when finished.

● Participants await ACK 
message

○ Retry with another aggregator after 
some timeout.



Experiment Setup (1/2)

● Implemented Plexus in Python 3 using PyTorch.
● Evaluation on the DAS6 compute cluster.

● Metrics:
1. Time-to-accuracy
2. Communication-to-accuracy
3. Training-resources-to-accuracy



Experiment Setup (2/2)

● Four datasets:

● Three baselines
○ D-PSGD (sparsely connected topology)
○ D-PSGD (k-regular topology)
○ Gossip Learning



Plexus Compared to DL Baselines (FEMNIST)

20

40

60

80

0 50 100 150 200
Time into Experiment [h]

Te
st

 A
cc

ur
ac

y

20

40

60

80

10 100 1000 10000
Communication Volume [GiB]

Te
st

 A
cc

ur
ac

y
20

40

60

80

10 100 1000 10000
Training Resource Usage [h]

Te
st

 A
cc

ur
ac

y

Time-to-Accuracy Communication-to-Accuracy Resource-to-Accuracy

Plexus shows significant performance improvements over baselines!



Plexus Overhead

0.00

0.25

0.50

0.75

1.00

CIFAR10 CelebA FEMNIST MovieLens
dataset

av
er
ag
e_
co
un
t_
fra
ct
io
n

ack membership model ping pong view

0%

25%

50%

75%

100%

CIFAR10 CelebA FEMNIST MovieL.
Dataset

%
 o

f c
om

m
. v

ol
um

e

0%

25%

50%

75%

100%

CIFAR10 CelebA FEMNIST MovieL.
Dataset

%
 o

f m
es

sa
ge

s



Conclusions

● Plexus is a practical and efficient DL system.

● Significant savings in time-to-accuracy (1.2-8.3x), communication-to-accuracy 
(2.4-15.3x) and resource-to-accuracy (6.4-370x).

● Future work: dealing with Byzantine nodes.



SaCS - Scalable computing systems laboratory

Thank you!

martijn.devos@epfl.ch


