

Scalable computing systems laboratory

Decentralized Learning made Practical

Martijn de Vos martijn.devos@epfl.ch

In collaboration with Anne-Marie Kermarrec, Rishi Sharma, Akash Dhasade, Johan Pouwelse and Erick Lavoie.

Grenoble, 14.12.2023

Distributed Learning with Decentralized Data

Data stay where it is generated. Learning happens by model exchange.

Decentralized Learning

Decentralized Learning

Improving Decentralized Learning

- 1. Churn impacts convergence
- 2. Global aggregation improves convergence
- 3. Not all nodes need to work each round (theory in [1])

[1] Liu, Ziwei, et al. "Decentralized stochastic optimization with client sampling." OPT 2022: Optimization for Machine Learning (NeurIPS 2022 Workshop). 2022.

The Design of Plexus

High-level algorithm

- 1. Each round, a unique subset of online nodes, or a **sample**, train the model.
- 2. These nodes send their trained model to an **aggregator**.
- 3. The aggregator aggregates models and sends the model to the next sample.

Resembles Federated Learning, but without server.

Three Technical Challenges (TCs)

TC1: How can nodes derive samples?

TC2: How can Plexus avoid selecting offline nodes during sampling?

TC3: How can Plexus ensure system progression when nodes go offline during training or aggregation?

TC1: How can nodes derive samples?

- Important that different nodes derive the same sample.
- Each peer stores all peer IDs in a **local view**.
- Each peer samples peer for the next round using its population view.
- Aggregator selected like this as well, based on bandwidth.

TC1: How can nodes derive samples?

Algorithm 1 Sampling by node i where k denotes the round number and s is the requested sample size.

1: **Require:** Ping timeout Δt_p

2:

- 3: procedure SAMPLE(k, s)
- 4: /* ACTIVES() are the online nodes in local views */
- 5: $H \leftarrow \text{SORT}([\text{HASH}(j+k) \text{ for } j \text{ in } \text{ACTIVES}()])$
- 6: $C \leftarrow [j \text{ for } h_j \text{ in } H] \triangleright \text{Candidate identifiers}$
- 7: **return** the first s in C that answer a ping within Δt_p

TC2: How can Plexus avoid selecting offline nodes during sampling?

- Nodes send a join or leave message to other random nodes.
- Nodes keep track of the membership status of other nodes in their local view.
- Local views are gossiped and merged between nodes.

ID	Seq. no.	Status		ID	Seq. no.	Status		ID	Seq. no.	Status
3b9f8	2	LEAVE	÷	3b9f8	2	LEAVE		3b9f8	2	LEAVE
u7nk3	3	JOIN		u7nk3	4	LEAVE		u7nk3	4	LEAVE
a2o8g	2	JOIN		a2o8g	1	LEAVE		a2o8g	2	JOIN
Local v	view of noo	<u>de a</u>		Local view of node b				<u>After merge</u>		

TC3: How can Plexus ensure system progression when nodes go offline during training or aggregation?

Participant failure

- Aggregator proceeds when
 - Received f < s trained models
 - After some aggregation timeout

Aggregator failure

- Aggregator sends ACK message to previous participants when finished.
- Participants await ACK message
 - Retry with another aggregator after some timeout.

Experiment Setup (1/2)

- Implemented Plexus in Python 3 using PyTorch.
- Evaluation on the DAS6 compute cluster.
- Metrics:
 - 1. Time-to-accuracy
 - 2. Communication-to-accuracy
 - 3. Training-resources-to-accuracy

Experiment Setup (2/2)

• Four datasets:

DATASET	Task	Nodes	LEARNING PARAMETERS	MODEL	MODEL SIZE
CIFAR10 [31]	Image classification	1000	$\eta = 0.002$, momentum = 0.9	CNN (LeNet [20])	346 KB
CelebA [10]	Image classification	500	$\eta = 0.001$	CNN	124 KB
FEMNIST [10]	Image classification	355	$\eta = 0.004$	CNN	6.7 MB
MovieLens [18]	Recommendation	610	$\eta = 0.2$, embedding dim = 20	Matrix Factorization	827 KB

- Three baselines
 - D-PSGD (sparsely connected topology)
 - D-PSGD (k-regular topology)
 - Gossip Learning

Plexus Compared to DL Baselines (FEMNIST)

- - Plexus — Plexus (churn) - - GL — GL (churn) - D-PSGD (OP) — D-PSGD (OP, churn)

- - D–PSGD (k–reg) — D–PSGD (k–reg, churn)

Plexus shows significant performance improvements over baselines!

Plexus Overhead

Conclusions

- Plexus is a practical and efficient DL system.
- Significant savings in time-to-accuracy (1.2-8.3x), communication-to-accuracy (2.4-15.3x) and resource-to-accuracy (6.4-370x).
- Future work: dealing with Byzantine nodes.

SaCS - Scalable computing systems laboratory

Thank you!

martijn.devos@epfl.ch

