
Fine grained Energy Profiling of
programs

Roblex NANA TCHAKOUTE

PhD Student
Centre de Recherche en Informatique (CRI)

Mines Paris - PSL Research University
PhD supervised by: Claude TADONKI (CRI), Petr DOKLADAL (CMM) and Youssef MESRI (CEMEF)

Date : 13/12/2023

1

contents

1. Context
2. General problem
3. Energy activities in computer
4. Energy profiling tools
5. Presentation of EA2P
6. Experimental validation of our tool
7. Conclusion and futur directions

2

Context

3

4

Schneider Electric estimates that IT sector electricity demand will grow by 50 percent by 2030, reaching 3,200TWh,
equivalent to 5 percent Compound Annual Growth Rate (CAGR) over the next decade. | © Image: Schneider Electric

5

Few facts

● Training AI : Its estimated energy consumption due to training GPT-3 is 1287
MWh and its carbon emissions are 552 tCO₂e (tons of CO₂ equivalent emissions).

○ equivalent to driving 112 gasoline powered cars for a year

● Inference AI : BLOOM, consumed 914 kWh of electricity and emitted 360 kg
for 18 days where it handled 230,768 requests (roughly 1.56 gCO₂e per request)

○ 350 kgCO₂ = 1/3 Paris-New-York return

● Embedded devices : The AGX Orin is currently the most powerful board
from Nvidia Jetson, with up to 275 TOPS and 60W TDP.

○ On full TDP, 60Wh battery will have 1h of life time. (Energy constraints for battery powered systems)

6

7

General problem

8

Problem ?
● Computer activities uses more energy to provide more computation power

● Carbon is the consequence of energy consumption

○ Computer use energy and not carbon

○ Carbon footprint = Energy x Carbon Intensity

● Optimizing energy use and production is the way to reduce carbon footprint

Goal of optimization : Best trade-off between “Energy-Time-Memory”

➔ 3-Dimensional optimization schema

➔ Main constraint for energy production : The source (low-carbon sources)

➔ Main constraint for energy use : The quantity (should be minimized)

9

10

Energy activities in
computer

11

Taxonomy of energy activities in computer

12

Motivations for software profiling (In-bound)

● Computer energy can be measured with Power Meter

● The most accurate way but, less helpful in optimization

● We need fine grained measurements to understand

devices uses and them make optimization by devices

● We could also make program optimization

Mains energy hungry part within a
modern computer server

News devices provides integrated sensors for fine grained software energy/power measurements

13

Energy profiling tools

14

SOTA Energy Profiling tools with hardware landscape

15

Profiling tools

● Programmability
Should provides fine-grained control over energy profiling and allows developers to focus on specific
parts of the codebase to optimize energy efficiency and performance (instrumentation and APIs)

● Flexibility
To measure specific parts of the computer, allowing configurations, auto target hardware detection, and
porting to other architectures.

● Standalone
Easy to install, few dependences on others library and tools, minimum privileged rights for access

● Portability
Compatibility across device generations, even within the same manufacturer (facilitate maintenance)

● Accuracy
The tool does indeed measure the desired behavior and should be consistent across workloads

Key characteristics expected from of a profiling tool

Reality with existing tools (why a new tool ?)
● Difficult to get, installed (need for hand configuration) and run
● Not reliable measurements (provide estimates - inconsistency)
● Lack of flexibility (device dependent - OS dependent)
● Lack of documentation (comprehension of the approach and outputs)

Thus our motivation to design a new energy measurement tool 16

Background

● Intel provided RAPL as embedded energy

sensors for CPU grouped in power

domains

● AMD provided similar ones for their CPU

● Nvidia GPU have Nvidia-SMI

● AMD GPU have ROCm-SMI

● And so on…

Each device manufacturer need to integrate

embedded sensors into their design

Example of power domain in Intel RAPL
17

Presentation of our tool

18

Design overview of our tool : Energy Aware Application
Profiler (EA2P)

● our tool is written in Python
● we retrieve the values of the (power dedicated) registers through medium-level tools
● our tool can be used in a standalone (external call) form or through an API for programmability (internal call)

● our tool automatically detects the needed subtools for its execution (e.g. perf, PowerCap, …) 19

Few commands to access sensors values

● Intel
○ sudo sh -c 'echo -1 >/proc/sys/kernel/perf_event_paranoid'
○ sudo chmod -R a+r /sys/class/powercap/intel-rapl

● AMD
○ sudo sh -c 'echo -1 >/proc/sys/kernel/perf_event_paranoid'
○ perf stat —per-nodes -e power/energy-pkg/
○ rocm-smi --showpower #for AMD GPU power reading

● Nvidia
○ nvidia-smi --query-gpu=power.draw --format=csv

● RAM
○ sudo chmod -R a+r /sys/firmware/dmi/tables

There are hardware sensors that constantly get either the power or the energy of
the device (or specific parts) while running and the measurements are stored into
specific registers. (they are recent, otherwise we would go with rough and global estimations).
They are essential to get power/energy informations.

20

Functional overview of EA2P

21

Sample usage in a Program

● syntax : $ python ea2p.py my_program

● Example of call with C program :

$ gcc -O3 -o matmul -fopenmp matmul.c
$ python ea2p.py ‘export OMP_NUM_THREADS=32;./matmul 8000’

1. from ea2p import Meter
2. power_meter = Meter()
3.
4. @power_meter.measure_power(
5. package="time",
6. algorithm="sleep",
7. data_type="",
8. algorithm_params="",
9.)

10. def test_sleep(interval):
11. time.sleep(interval)
12. test_sleep(180) # runing

1. from ea2p import Meter
2. config_path = “config.csv”
3. power_meter = Meter(config_path)
4.
5. @power_meter.measure_power(
6. package="time",
7. algorithm="sleep",
8.)
9. def test_sleep(interval):

10. time.sleep(interval)
11. test_sleep(180) # runing

Code InstrumentationCLI API call

With config file

Sample config file
devices=gpu,cpu,ram
interval=0.01
output_file=experiment.csv
RAPL_FILE=/sys/class/powercap/intel/
energy_unit=wh 22

Experimental evaluation

23

Experimental evaluation : Goals

● Tool Accuracy Assessment: Validate the accuracy and precision of the energy profiling tool in measuring

power consumption across different hardware components, including CPU, RAM, and GPU.

● Energy Profiling Consistency: Ensure the consistency of energy profiling results across multiple

hardware platforms (AMD, Intel, and Nvidia).

● Workload Characterization: Profile various computational workloads, including CPU-intensive,

GPU-intensive, and heterogeneous computing tasks, to evaluate the tool’s ability to capture energy usage

patterns accurately.

● Cross-Platform Compatibility: Assess the tool’s compatibility with different hardware components (AMD

and Intel CPUs, AMD and Nvidia GPUs) to ensure its versatility.

24

The testbed used

Applications:

● Sleep

● VGG16 with cifar10 TensorFlow

dataset

● VGG16 with Stanford dogs

TensorFlow dataset

● Parallel OpenMP multiplication

with matrix size 8000x8000

neowise, grouille and gemini are clusters from GRID5000. https://www.grid5000.fr/w/Grid5000:Home

25

https://www.grid5000.fr/w/Grid5000:Home

Algorithms details

26

● VGG16 fine tuning (just
train the last layer)

● Example of annotation
for power measurement

● Main call for training

Energy reported values

● psys : Energy of the system on chip (motherboard energy like in BMC counters

with IPMI tools)

● package : The CPU domain (the CPU chip energy)

● uncore : The integrated GPU energy of the package

● cores : The total consumption of all CPU cores of the package

● gpu : The consumption of GPU devices (like Nvidia, AMD, ..)

● ram : The energy of RAM domains

● time : The CPU elapsed time of application or instrumented code

27

Application tool package (Wh) ram (Wh) time (sec)

sleep perf 2.27407 1.34291 183.787

EA2P 2.1912 1.32991 180.274

VGG16
CIFAR-CPU

perf 27.62617 5.21861 464.698

EA2P 28.52879 5.4077 495.096

VGG16
CIFAR-GPU

perf 1.61851 0.51481 68.425

EA2P 1.21921 0.38869 52.459

CPU and DRAM validation on intel server "gemini"
(Intel CPU)

Application tool package (Wh) ram (Wh) time (sec)

sleep perf 4.78517 / 185.138
EA2P 4.65467 4.85333 180.545

VGG16
CIFAR-CPU

perf 45.28731 / 557.001

EA2P 45.57702 14.24 574.154
VGG16
CIFAR-GPU

perf 1.61832 / 45.058

EA2P 1.21736 0.96 33.888

CPU and DRAM validation on AMD server "grouille"
(AMD CPU)

Application tool cores (Wh) uncore (Wh) package (Wh) psys (Wh) ram (Wh) time (sec)
Sleep perf 0.00809 0.00048 0.14932 0.52005 / 180.029

EA2P 0.008 0.00048 0.14917 0.52087 0.03116 180.192
VGG16
CIFAR-GPU

perf 0.08935 0.00138 0.2742 2.78056 / 72.626
EA2P 0.05674 0.00132 0.22923 2.6726 0.01456 66.903

VGG16
CIFAR-CPU

perf 3.71593 0.00764 5.94994 11.0017 / 1476.905
EA2P 3.69657 0.00783 5.95218 14.4883 0.29528 1478.121

CPU and DRAM validation on intel client "Laptop"

28

The energy of the whole system when no program is running can be non negligible. So take it into
account in measurement as we can see with sleep test.

Application tool CPU (Wh) GPU (Wh) time(sec)

sleep CodeCarbon 0.30538 0.98752 181.931

EA2P 0.20417 0.82411 180.706

VGG16
CIFAR-GPU

CodeCarbon 0.22944 2.07726 67.993

EA2P 0.23011 2.04792 67.757

GPU validation on Nvidia ("Laptop"). CPU is the energy of package domain

Application packages(Wh)ram (Wh)GPU0 (Wh) GPU1 (Wh) GPU2 (Wh) GPU3 (Wh) GPU4 (Wh) GPU5 (Wh) GPU6 (Wh) GPU7 (Wh) time (sec)

Sleep 2.19481 1.33308 2.17964 2.10399 2.12799 2.10432 2.10385 2.12957 2.10584 2.14317 181.038

VGG16
DOG-CPU

28.52879 5.4077 5.63378 5.41911 5.50514 5.41387 5.39961 5.49029 5.41896 5.52412 495.096

VGG16
DOG-GPU

1.21921 0.38869 2.51989 0.81177 0.81666 0.80432 0.81027 0.81626 0.80222 0.81376 52.459

Multi GPU systems energy report "gemini" EA2P

29

Fine tuning VGG16 with Stanford dog dataset consume a total of more than 77 Wh for more than 9 minutes running on 80
threads Intel Xeon server with 8 Nvidia V100 GPU mounted.
The same program using GPU computing consume around 10 Wh for less than a minute of execution on the same machine. So
10x faster and 8x energy efficient

Sampling frequency influence
Application : VGG16 training on
CIFAR10 with TensorFlow with batch
size 64 and 10 epochs
CPU : Intel Core i9 12950HX (24
Threads)
RAM : 32 GB DDR5-4800
GPU : RTX 3080Ti, 16GB, GDDR6

● Sampling frequency is the time between two query of energy values
● CPU (psys and package) energy and time are more correlated with sampling interval
● Normally, psys >= package+gpu since it’s the entire board value
● GPU depend on Nvidia-smi which report the power and not the energy. So we notice

consistency problem with low sampling intervals.
● Threads join from logging process is the problem of time overhead for big intervals

30

Multi-threading analysis CPU : AMD EPYC 7452 (x2); Threads : 64 (x2), CPU TDP : 155W (x2) RAM : 128 GB;
Algorithm : Matrix Multiplication; Matrix size : 8000x8000; OpenMP with - O3

● The total CPU energy consumption =
package 0 + package 1

● We don’t fixed threads placements on
CPU or NUMA node to see the effect.

● Could be interesting to analyse NUMA
energy effect, and energy of threads
scalability in tradeoff with runtime.

31

Conclusion

● EA2P provide small overhead compared to Linux perf and codeCarbon tools

● provide fine grained results per device & power domains (Intel)

● Measurement for RAM, AMD GPU & CPU, Nvidia GPU, and Intel CPU

● Code Instrumentation API and CLI usages

● Provide Sampling frequency option to users.

● Automatic detection of device vendors and commands to use

● Possibility to select specific devices measurement (Only subset of the system)

32

Future works

➔ Investigate the FLOPS/Watt performance metrics

➔ use the tool to analyse the energy-time tradeoff of multi-threading

computation

➔ Analyse the multi-GPU use in Deep learning training

➔ Apply optimization techniques (Mixed precision, quantization, etc.).

➔ Validate our RAM energy estimate

➔ Publication of a research paper for the tool

33

Thank you for your Attention !

34

Email : {roblex.nana_tchakoute, claude.tadonki, petr.dokladal, youssef.mesri}@minesparis.psl.eu

This research was supported by The Transition Institute 1.5 driven by École des Mines de Paris - PSL

