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min
x∈𝒦

f(x) = 𝔼a,b [ℓ(hx(a), b))]
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Online Learning
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Player’s goal : Determine a sequence of actions 

 minimising the cumulative loss  x1, …, xT

T

∑
t=1

ft(xt)



Why Frank-Wolfe ?

Vanilla Frank-Wolfe : 

1.Linear Oracle:  

2.Update : 

st = argmin
s∈𝒦

⟨∇f(xt), s⟩

xt+1 = xt + ηt(st − xt)

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization. 5

Gradient Descent : 

1.Update:  

2.Projection : 

yt+1 = xt − η∇f(xt)

xt+1 = Π𝒦(yt+1)



Why Frank-Wolfe ?

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Sebastian 
Pokutta, Conditional Gradient Methods, arXiv:2211.14103 [math.OC]

https://arxiv.org/abs/2211.14103


Online Linear Oracle

Vanilla Frank-Wolfe : 

1.Linear Oracle:  

2.Update : 

st = argmin
s∈𝒦

⟨∇f(xt), s⟩

xt+1 = xt + ηt(st − xt)

st = argmin
s∈𝒦 {ζ

t−1

∑
l=1

⟨gl, s⟩ + ⟨u, s⟩}

Online Linear Oracle  :  
 
Sequence of linear loss function 


𝒪

⟨g1, ⋅ ⟩, ⟨g2, ⋅ ⟩, …

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization. 7



Delay Mechanism
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 (or ) 
 

, 

Ft = {s ≤ t; s + ds − 1 = t} Ft = ∅

Fi
t = {s ≤ t; s + di

s − 1 = t} ∀i ∈ [n]

Available
Gradients

Node 1

Empty Pool

Node 2

Available
Gradients

Node 3

Figure : Given a time t, each agent holds a distinct pool of available gradient 
feedback that is ready for computation at the current time.

Regret :


 RT =
T

∑
t=1

ft(xt) − min
x∈𝒦

T

∑
t=1

ft(x)



Centralized Algorithm

For some round t For  rounds, doK

xk+1 = xk + ηk(sk − xk)

sk ∈ 𝒪kPrediction

Update
gk = ∑

s∈Ft

∇fs(xs,k)

For  rounds, doK

Update  with 𝒪k gk

sk = argmin
s∈𝒦

ht−1,k

Follow the Perturbed Leader

ht−1,k = ζ
t−1

∑
l=1

⟨gl,k, s⟩ + ⟨n, s⟩

ht−1,k + ζ⟨gk, . ⟩

Play  and receives xt = xK+1 Ft



yi,k =
n

∑
j=1

wijxj,k

(2) di,k =
n

∑
j=1

wijgj,k

(1) ∑
s∈Fi

t

[∇fi,s(xi
s,k+1) − fi,s(xi

s,k)] + di,k

For some round  
at agent 

t
i

Decentralized Algorithm

For  rounds, doK

xi,k+1 = yi,k + ηk(si,k − yi,k)

si,k ∈ 𝒪i,kPrediction

Update

Update  with 𝒪i,k di,k

Local gradient average (2)

Surrogate gradient  (1)gi,k+1

For  rounds, doK

Play  and receives xi,t = xi,K+1 Fi
t



Some comments : 

 Online Linear Oracles  throughout the learning process 

Oracles provide estimations of the upcoming gradients’ direction from feedbacks on previous 
rounds 

Oracles receive delayed feedback from the algorithms 

Mixed delayed feedbacks from neighbouring agents in distributed setting 
 

K 𝒪1, …, 𝒪K

Impact of delayed feedback to the oracle’s output  
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∥st − ̂st∥ = O (ζ∑
s<t

I{s+ds>t})
∥si

t − ̂si
t∥ = O (ζ n ( λ

ρ
+ 1) 1

n

n

∑
i=1

∑
s<t

I{s+di
s>t})

 : oracle’s output with delayed feedback 

 : oracle’s output without delayed feedback

st

̂st
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Informal Theorem 1 : 

Given , , 





ζ =
1

G B
ηk = min (1,

A
k ) K = T

RT = O (DG B + RT,𝒪)
Additional term related 

to delayed feedback

Regret of the 
oracle  

 , sum of all delay value over  roundsB =
T

∑
t=1

dt T



Informal Theorem 2 : 

Given , , 





ζ =
1

G B
ηk = min (1,

A
k ) K = T

RT = O ( nDG ( λ
ρ

+ 1) B + RT,𝒪)
 , sum of average delay values over  agents B =

T

∑
t=1

1
n

n

∑
i=1

di,t n

RT =
T

∑
t=1

Ft(xt) −
T

∑
t=1

Ft(x*)Ft(x) =
1
n

n

∑
i=1

fi,t(x)
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Discussion

Positive Results :  

Distributed projection-free algorithm that handling delayed feedback


Optimal Regret Bound in delay and non-delay setting 

Limitation : 

Excessive gradient computation => high communication 



Thank you 



Follow the Perturbed Leader

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization.


