Distributed Online Frank-Wolfe under Delayed Feedback

Tuan-Anh Nguyen

Journée de Recherche en Apprentissage Frugal Grenoble, France

$\min_{x \in \mathcal{X}} f(x) = \mathbb{E}_{a,b} \left[\ell(h_x(a), b)) \right]$

Player's goal : Determine a sequence of actions x_1, \ldots, x_T minimising the cumulative loss $\sum f_t(x_t)$ t=1

Online Learning

Sponsored :

Vanilla Frank-Wolfe :

1.Linear Oracle: $s_t = \operatorname{argmin} \langle \nabla f(x_t), s \rangle$ $s \in \mathcal{K}$

2.Update : $x_{t+1} = x_t + \eta_t (s_t - x_t)$

Gradient Descent :

1.Update: $y_{t+1} = x_t - \eta \nabla f(x_t)$ 2.Projection : $x_{t+1} = \prod_{\mathscr{K}} (y_{t+1})$

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization.

Why Frank-Wolfe?

Set

n-dimensional ℓ_p -ball, $p \neq 1, 2, \infty$ Nuclear norm ball of $n \times m$ matrices Flow polytope on a graph with *m* vertices and *n* edges with capacity bound on edges Birkhoff polytope ($n \times n$ doubly stochastic matrices)

Gábor Braun, Alejandro Carderera, Cyrille W Combettes, Hamed Hassani, Amin Karbasi, Aryan Mokhtari, and Sebastian Pokutta, *Conditional Gradient Methods*, <u>arXiv:2211.14103</u> [math.OC]

Linear minimization	Projection
O(n) $O(\nu \ln(m+n)\sqrt{\sigma_1}/\sqrt{\varepsilon})$ $O((n \log m)(n+m \log m))$	$\tilde{O}(n/\varepsilon^2)$ $O(mn\min\{m,n\})$ $O(n^4\log n)$
$O(n^3)$	$\tilde{O}(n^2/\varepsilon^2)$

Vanilla Frank-Wolfe :

1.Linear Oracle: $s_t = \operatorname{argmin} \langle \nabla f(x_t), s \rangle$ $s \in \mathcal{K}$

2.Update : $x_{t+1} = x_t + \eta_t (s_t - x_t)$

Online Linear Oracle \mathcal{O} :

Sequence of linear loss function $\langle g_1, \cdot \rangle, \langle g_2, \cdot \rangle, \ldots$

$$s_{t} = \underset{s \in \mathcal{K}}{\operatorname{argmin}} \left\{ \zeta \sum_{l=1}^{t-1} \langle g_{l}, s \rangle + \langle u, s \rangle \right\}$$

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization.

Online Linear Oracle

▶
$$\mathbf{F}_{t}^{i} = \{s \leq t; s + d_{s}^{i} - 1 = t\}, \forall i \in [n]$$

Delay Mechanism

Figure : Given a time t, each agent holds a distinct pool of available gradient feedback that is ready for computation at the current time.

Centralized Algorithm

For some round *t*

Prediction

For *K* rounds, do

 $g_k =$

Update

$$x_k \in \mathcal{O}_k$$

 $x_k + \eta_k(s_k - x_k)$

Follow the Perturbed Leader

$$h_{t-1,k} = \zeta \sum_{l=1}^{t-1} \langle g_{l,k}, s \rangle + \langle n \rangle$$

$$s_k = \operatorname*{argmin}_{t-1,k} h_{t-1,k}$$

Play $x_t = x_{K+1}$ and receives \mathbf{F}_t

bunds, do

$$g_k = \sum_{s \in \mathbf{F}_t} \nabla f_s(x_{s,k})$$
Update \mathcal{O}_k with g_k

$$h_{t-1,k} + \zeta \langle g_k, . \rangle$$

For some round t at agent i

Prediction

For *K* rounds, do

Local gradient average (2)

Update

Decentralized Algorithm

$$S_{i,k} \in \mathcal{O}_{i,k}$$

= $(y_{i,k}) + \eta_k(s_{i,k} - y_{i,k})$

$$y_{i,k} = \sum_{j=1}^{n} w_{ij} x_{j,k}$$

Play $x_{i,t} = x_{i,K+1}$ and receives \mathbf{F}_t^i

Surrogate gradient $g_{i,k+1}(1)$

Update $\mathcal{O}_{i,k}$ with $d_{i,k}$

(1)
$$\sum_{s \in \mathbf{F}_{t}^{i}} \left[\nabla f_{i,s}(x_{s,k+1}^{i}) - f_{i,s}(x_{s,k}^{i}) \right]$$

(2) $d_{i,k} = \sum_{j=1}^{n} w_{ij}g_{j,k}$

Some comments :

- ▷ K Online Linear Oracles $\mathcal{O}_1, \ldots, \mathcal{O}_K$ throughout the learning process
- Oracles provide estimations of the upcoming gradients' direction from feedbacks on previous rounds
- Oracles receive delayed feedback from the algorithms
- Mixed delayed feedbacks from neighbouring agents in distributed setting

Impact of delayed feedback to the oracle's output

$s_{t} :$ oracle's output with delayed feedback

 \hat{s}_{t} : oracle's output without delayed feedback

$$\|s_t^i - \hat{s}_t^i\| = O(\zeta_{\gamma})$$

 $\|s_t - \hat{s}_t\| = O\left(\zeta \sum_{\{s+d_s > t\}}\right)$

 $\sqrt{n} \left(\frac{\lambda}{\rho} + 1\right) \frac{1}{n} \sum_{i=1}^{n} \sum_{s < t} \mathbf{I}_{\{s+d_s^i > t\}}\right)$

 $\begin{pmatrix} 1, \frac{A}{k} \end{pmatrix}, K = \sqrt{T}$ $R_T = O\left(DG\sqrt{B} + R_{T, \mathcal{O}}\right)$ Additional term related to delayed feedback
Regret of the oracle

 $B = \sum_{t=1}^{T} d_t$, sum of all delay value over *T* rounds

Informal Theorem 1 :

$$F_{t}(x) = \frac{1}{n} \sum_{i=1}^{n} f_{i,t}(x)$$

Informa
Solution Given
$$\zeta = \frac{1}{G\sqrt{B}}, \eta_k = min\left(1, \frac{A}{k}\right), K = \sqrt{T}$$

 $R_T = O\left(\sqrt{nDG}\right)$
 $B = \sum_{t=1}^T \frac{1}{n} \sum_{i=1}^n d_{i,t}$, sum of average delay values ov

$$R_T = \sum_{t=1}^{T} F_t(x_t) - \sum_{t=1}^{T} F_t(x^*)$$

al Theorem 2 :

 $F\left(\frac{\lambda}{\rho}+1\right)\sqrt{B}+R_{T,\mathcal{O}}\right)$

ver *n* agents

- Quanrud et al. 2015. Online learning with adversarial delays. Advances in Neural Information Processing Systems.
- Wan et al. 2022. Online frank-wolfe with arbitrary delays. Advances in Neural Information Processing Systems.

Table 1: Comparisons to previous algorithms DGD [Quanrud and Khashabi, 2015] and DOFW [Wan et al., 2022] on centralized online convex optimization with delays bounded by d. Our algorithms are in bold.

Algorithm	Centralized	Distributed	Adversarial Delay	Projection-free	Regret
DGD	Yes	-	Yes	_	$\mathcal{O}(\sqrt{dT})$
DOFW	Yes	-	Yes	Yes	$\mathcal{O}(T^{3/4} + dT^{1/4})$
\mathbf{DeLMFW}	Yes	-	Yes	Yes	$\mathcal{O}(\sqrt{dT})$
De2MFW	-	Yes	Yes	Yes	$\mathcal{O}(\sqrt{dT})$

Joulani et al. 2013. Online learning under delayed feedback. Proceedings of the 30th International Conference on Machine Learning.

- 5 4 4 ∇ $\mathbf{7}$ 8 8

DeLMFW

Pullover (2)

Pullover (2)

Pullover (2)

Bag (8)

Ankle boot (9)

T-shirt/top (0)

Topol 0 2 5 10 20

Number of agents with delayed feedback

ology	Erdos Renyi	Grid	Complete	Cycle
	809.37	855.62	799.49	925.72
	820.15 (+1.3%)	852.15 (-0.4%)	798.79 (-0.08%)	932.34 (+0.7%)
	834.74 (+3.0%)	868.52 (+1.4%)	802.59 (+0.3%)	971.24 (+4.7%)
	838.74 (+3.5%)	878.04 (+2.5%)	792.45 (-0.8%)	983.89 (+6.0%)
	850.49 (+4.9%)	902.30 (+5.3%)	812.21 (+1.5%)	1119.24 (+18.9%

Positive Results :

- Distributed projection-free algorithm that handling delayed feedback
- Optimal Regret Bound in delay and non-delay setting

Limitation :

Excessive gradient computation => high communication

Thank you

Algorithm 17 FPL for linear losses

- 1: Input: $\eta > 0$, distribution \mathcal{D} over \mathbb{R}^n , decision set $\mathcal{K} \subseteq \mathbb{R}^n$.
- 2: Sample $\mathbf{n}_0 \sim \mathcal{D}$. Let $\hat{\mathbf{x}}_1 \in \arg\min_{\mathbf{x} \in \mathcal{K}} \{-\mathbf{n}_0^\top \mathbf{x}\}$.
- 3: for t = 1 to T do
- Predict $\hat{\mathbf{x}}_t$. 4:
- Observe the linear loss function, suffer loss $\mathbf{g}_t^{\top} \mathbf{x}_t$. 5:
- Update 6:

$$\hat{\mathbf{x}}_{t} = \operatorname*{arg\,min}_{\mathbf{x}\in\mathcal{K}} \left\{ \eta \sum_{s=1}^{t-1} \mathbf{g}_{s}^{\top} \mathbf{x} + \mathbf{n}_{0}^{\top} \mathbf{x} \right\}$$

7: end for

Hazan, E. 2015, Introduction to online convex optimization. Foundations and Trends in Optimization.

Lemma 1 (Theorem 5.8 [Hazan, 2016]). Given a sequence of linear loss function f_1, \ldots, f_T . Suppose that Assumptions 1 to 3 hold true. Let \mathcal{D} be a the uniform distribution over hypercube $[0,1]^m$. The regret of FTPL is

$$\mathcal{R}_{T,\mathcal{O}} \leq \zeta D G^2 T + \frac{1}{\zeta} \sqrt{m} D$$

where ζ is learning rate of algorithm.

